Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0296407, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422047

RESUMO

To improve animal performance and modify growth by increasing lean tissue accretion, beef cattle production has relied on use of growth promoting technologies such as beta-adrenergic agonists. These synthetic catecholamines, combined with the variable inclusion of rumen degradable (RDP) and undegradable protein (RUP), improve feed efficiency and rate of gain in finishing beef cattle. However, research regarding the impact of beta-adrenergic agonists, protein level, and source on the ruminal microbiome is limited. The objective of this study was to determine the effect of different protein concentrations and beta-adrenergic agonist (ractopamine hydrochloride; RAC) on ruminal bacterial communities in finishing beef heifers. Heifers (n = 140) were ranked according to body weight and assigned to pens in a generalized complete block design with a 3 × 2 factorial arrangement of treatments of 6 different treatment combinations, containing 3 protein treatments (Control: 13.9% CP, 8.9% RDP, and 5.0% RUP; High RDP: 20.9% CP, 14.4% RDP, 6.5% RUP; or High RUP: 20.9% CP, 9.7% RDP, 11.2% RUP) and 2 RAC treatments (0 and 400 mg/day). Rumen samples were collected via orogastric tubing 7 days before harvest. DNA from rumen samples were sequenced to identify bacteria based on the V1-V3 hypervariable regions of the 16S rRNA gene. Reads from treatments were analyzed using the packages 'phyloseq' and 'dada2' within the R environment. Beta diversity was analyzed based on Bray-Curtis distances and was significantly different among protein and RAC treatments (P < 0.05). Alpha diversity metrics, such as Chao1 and Shannon diversity indices, were not significantly different (P > 0.05). Bacterial differences among treatments after analyses using PROC MIXED in SAS 9 were identified for the main effects of protein concentration (P < 0.05), rather than their interaction. These results suggest possible effects on microbial communities with different concentrations of protein but limited impact with RAC. However, both may potentially act synergistically to improve performance in finishing beef cattle.


Assuntos
Dieta , Digestão , Bovinos , Animais , Feminino , Dieta/veterinária , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Proteínas na Dieta/farmacologia , Proteínas na Dieta/metabolismo , Rúmen/metabolismo , Bactérias/metabolismo , Agonistas Adrenérgicos beta/farmacologia
2.
Nat Genet ; 56(1): 112-123, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177344

RESUMO

The Farm Animal Genotype-Tissue Expression (FarmGTEx) project has been established to develop a public resource of genetic regulatory variants in livestock, which is essential for linking genetic polymorphisms to variation in phenotypes, helping fundamental biological discovery and exploitation in animal breeding and human biomedicine. Here we show results from the pilot phase of PigGTEx by processing 5,457 RNA-sequencing and 1,602 whole-genome sequencing samples passing quality control from pigs. We build a pig genotype imputation panel and associate millions of genetic variants with five types of transcriptomic phenotypes in 34 tissues. We evaluate tissue specificity of regulatory effects and elucidate molecular mechanisms of their action using multi-omics data. Leveraging this resource, we decipher regulatory mechanisms underlying 207 pig complex phenotypes and demonstrate the similarity of pigs to humans in gene expression and the genetic regulation behind complex phenotypes, supporting the importance of pigs as a human biomedical model.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Suínos/genética , Animais , Humanos , Genótipo , Fenótipo , Análise de Sequência de RNA
3.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37666002

RESUMO

Most of the research addressing feed efficiency and the microbiota has been conducted in cattle fed grain diets, although cattle evolved to consume forage diets. Our hypothesis was that the bacteria in the rumen and cecum differed in cattle that have a common feed intake but had different ^average daily body weight gains (ADG) on a forage diet. Heifers (n = 134) were 606 ±â€…1 d of age and weighed 476 ±â€…3 kg at the start of the 84-d feeding study. Heifers were offered ad libitum access to a totally mixed ration that consisted of 86% ground brome hay, 10% wet distillers grains with solubles, and 4% mineral supplement as dry matter. Feed intake and body weight gain were measured, and gain was calculated. Heifers with the least (n = 8) and greatest (n = 8) ADG within 0.32 SD of the mean daily dry matter intake were selected for sampling. Digesta samples from the rumen and cecum were collected, and subsequent 16S analysis was conducted to identify Amplicon Sequence Variants. There were no differences in Alpha and Beta diversity between ADG classification within sample sites (P > 0.05). Both sample sites contained calculated balances of sister clades using phylogenetic isometric log ratio transferred data that differed across ADG classification. These findings suggest that bacteria did not differ at the community level, but there was structural difference at the clade level.


Feed is one of the greatest costs associated with beef production. Modifying the efficiency that feed is used offers a potential mechanism to improve production efficiency. Bacteria in the gastrointestinal tract modify the nutrient content of the feed cattle eat before it is absorbed. The rumen and cecum are the two primary sites of fermentation in the digesta tract. Structure of the bacterial community at the clade level suggests that they differ with feed efficiency.


Assuntos
Ração Animal , Rúmen , Bovinos , Animais , Feminino , Filogenia , Ração Animal/análise , Dieta/veterinária , Aumento de Peso , Ceco
4.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37052683

RESUMO

The objective of this experiment was to determine if supplying additional propionate to the rumen alters dry matter intake (DMI), feeding behavior, glucose metabolism, and rumen fluid metabolites in steers fed a finishing diet. Ruminally cannulated steers (n = 6) were fed a finishing diet ad libitum. Steers were randomly assigned to one of three treatments in a 3 × 6 Latin rectangle design with three 15 d periods. Treatments of no Ca propionate (Control), 100 g/d (Low), or 300 g/d (High) were ruminally dosed twice daily. Individual intake was measured using an Insentec feeding system. Pre-feeding blood samples were collected on day 7 and rumen fluid samples were collected on day 13. An intravenous glucose tolerance test (IVGTT) was conducted on day 14 and liver biopsies were collected on day 15. Liver samples were analyzed for expression of genes involved in gluconeogenesis. Data were analyzed using a mixed model with period, treatment, day, and their interaction included, with day and minute within period as a repeated measure and steer as a random effect. Meal size (P = 0.049), meal frequency (P = 0.046), and DMI (P < 0.001) were decreased in High steers. Day 7 plasma glucose (P = 0.23) and lactate (P = 0.47) were not affected by treatment, but insulin was decreased (P = 0.008) and non-esterified fatty acids were increased (P = 0.044) in the High treatment compared with the Control. Rumen fluid lactate was decreased (P = 0.015) in the High treatment compared with the Low treatment. Total VFA concentrations did not differ (P = 0.88) between treatments. There was treatment × time interaction for proportions of acetate and propionate (P < 0.001) and the acetate:propionate ratio (P = 0.005). The effect on acetate was due to a decrease in the High treatment 2 h after dosing the treatment. Propionate proportions were greater in the High treatment than the Control at all time points and differed from the Low except at 0 h. Propionate treatments had no major effects on the glucose and insulin parameters observed in the IVGTT other than a tendency (P = 0.09) for an increased insulin time to peak. These data indicate that exogenous propionate decreases DMI but the decrease in propionate from fermentation due to reduced DMI might negate the supply of exogenous propionate in VFA supply to the animal. Mechanisms other than hepatic oxidation of propionate might be responsible for DMI regulation.


Propionate metabolism by the liver is thought to be a key regulator of appetite and feed intake of animals, including cattle. Previous research has shown that providing propionate to the rumen of cattle decreases feed intake. Propionate is also a major contributor to glucose for cattle to use as an energy source for growth and maintenance. In this experiment, it was hypothesized that increasing ruminal propionate would depress feed intake and decrease insulin sensitivity. Supplying 300 g of propionate a day to the rumen decreased feed intake and increased the proportion of propionate in the rumen fluid of steers. However, when propionate production was calculated based on feed intake, there was likely no difference in propionate supply to the animal. The lack of increase in propionate supply to the animal could explain the lack of effect on glucose metabolism, insulin sensitivity, and liver gene expression. The lack of an increase in propionate also indicates that the effect of propionate on feed intake could be due to alternative mechanisms than liver metabolism of propionate.


Assuntos
Insulinas , Propionatos , Animais , Ração Animal/análise , Dieta/veterinária , Digestão , Fermentação , Glucose/metabolismo , Lactatos/metabolismo , Lactatos/farmacologia , Propionatos/farmacologia , Propionatos/metabolismo , Rúmen/metabolismo
5.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36566452

RESUMO

The objective of this study was to determine the dose of folate and vitamin B12 in beef heifers fed rumen protected methionine and choline required to maintain increased B12 levels and intermediates of the methionine-folate cycle in circulation. Angus heifers (n = 30; BW = 392.6 ±â€…12.6 kg) were individually fed and assigned to one of five treatments: 0XNEG: Total mixed ration (TMR) and saline injections at day 0 and 7 of the estrous cycle, 0XPOS: TMR, rumen protected methionine (MET) fed at 0.08% of the diet DM, rumen protected choline (CHOL) fed at 60 g/d, and saline injections at day 0 and 7, 0.5X: TMR, MET, CHOL, 5 mg B12, and 80 mg folate at day 0 and 7, 1X: TMR, MET CHOL, 10 mg vitamin B12, and 160 mg folate at day 0 and 7, and 2X: TMR, MET, CHOL, 20 mg B12, and 320 mg folate at day 0 and 7. All heifers were estrus synchronized but not bred, and blood was collected on day 0, 2, 5, 7, 9, 12, and 14 of a synchronized estrous cycle. Heifers were slaughtered on day 14 of the estrous cycle for liver collection. Serum B12 concentrations were greater in the 0.5X, 1X, and 2X, compared with 0XNEG and 0XPOS on all days after treatment initiation (P < 0.0001). Serum folate concentrations were greater for the 2X treatment at day 5, 7, and 9 of the cycle compared with all other treatments (P ≤ 0.05). There were no differences (P ≥ 0.19) in hepatic methionine-cycle or choline analyte concentrations by treatment. Concentrations of hepatic folate cycle intermediates were always greater (P ≤ 0.04) in the 2X treatment compared with the 0XNEG and 0XPOS heifers. Serum methionine was greater (P = 0.04) in the 0.5X and 2X heifers compared with 0XNEG, and S-adenosylhomocysteine (SAH) tended (P = 0.06) to be greater in the 0.5X heifers and the S-adenosylmethionine (SAM):SAH ratio was decreased (P = 0.05) in the 0.5X treatment compared with the 0XNEG, 0XPOS, and 2X heifers. The hepatic transcript abundance of MAT2A and MAT2B were decreased (P ≤ 0.02) in the 0.5X heifers compared with the 0XNEG, 0XPOS, and 2X heifers. These data support that beef heifers fed rumen protected methionine and choline require 20 mg B12 and 320 mg folate once weekly to maintain increased concentrations of B12 and folate in serum. Furthermore, these data demonstrate that not all supplementation levels are equal in providing positive responses, and that some levels, such as the 0.5X, may result in a stoichiometric imbalance in the one-carbon metabolism pathway that results in a decreased SAM:SAH ratio.


The strategic inclusion of one-carbon metabolites, which include vitamins and minerals that are found in human prenatal vitamins, to beef cattle feeding and management protocols during the periconceptual period (the time around breeding) is a novel concept. Therefore, this study aimed to identify the feeding and injection doses of one-carbon metabolites in beef heifers to maintain increased circulating concentrations of one-carbon metabolites for use as a model from which other studies could base their treatments on. We determined that daily feeding of methionine and choline at 0.08% of dry matter and 60 g/d, respectively, and administration of vitamin B12 and folate at 20 mg and 320 mg once per week, respectively resulted in sustained elevated concentrations of one-carbon metabolites.


Assuntos
Ácido Fólico , Metionina , Bovinos , Feminino , Animais , Ácido Fólico/metabolismo , Carbono/metabolismo , Racemetionina/metabolismo , Fígado/metabolismo , Ciclo Estral , Colina/metabolismo , S-Adenosilmetionina/metabolismo , Suplementos Nutricionais , Rúmen/metabolismo
6.
Front Genet ; 13: 983043, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36199583

RESUMO

Decreases in the costs of high-throughput sequencing technologies have led to continually increasing numbers of livestock RNA-Seq studies in the last decade. Although the number of studies has increased dramatically, most livestock RNA-Seq experiments are limited by cost to a small number of biological replicates. Meta-analysis procedures can be used to integrate and jointly analyze data from multiple independent studies. Meta-analyses increase the sample size, which in turn increase both statistical power and robustness of the results. In this work, we discuss cutting edge approaches to combining results from multiple independent RNA-Seq studies to improve livestock transcriptomics research. We review currently published RNA-Seq meta-analyses in livestock, describe many of the key issues specific to RNA-Seq meta-analysis in livestock species, and discuss future perspectives.

7.
Animals (Basel) ; 12(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35739852

RESUMO

In cattle, the rumen is an important site for the absorption of feed by-products released by bacterial fermentation, and variation in ruminal function plays a role in cattle feed efficiency. Studies evaluating gene expression in the rumen tissue have been performed prior to this. However, validating the expression of genes identified in additional cattle populations has been challenging. The purpose of this study was to perform a meta-analysis of the ruminal transcriptome of two unrelated populations of animals to identify genes that are involved in feed efficiency across populations. RNA-seq data from animals with high and low residual feed intake (RFI) from a United States population of cattle (eight high and eight low RFI) and a Canadian population of cattle (nine high and nine low RFI) were analyzed for differences in gene expression. A total of 83 differentially expressed genes were identified. Some of these genes have been previously identified in other feed efficiency studies. These genes included ATP6AP1, BAG6, RHOG, and YPEL3. Differentially expressed genes involved in the Notch signaling pathway and in protein turnover were also identified. This study, combining two unrelated populations of cattle in a meta-analysis, produced several candidate genes for feed efficiency that may be more robust indicators of feed efficiency than those identified from single populations of animals.

8.
Data Brief ; 42: 108074, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35392625

RESUMO

Fetal programming is established early in life, likely through epigenetic mechanisms that control gene expression. Micronutrients can act as epigenetic modifiers (EM) by modulating the genome through mechanisms that include DNA methylation and post-translational modification of chromatin. Among the EM, methionine, choline, folate, and vitamin B12 have been suggested as key players of DNA methylation. However, the effects of supplementing these four EM, involved in the methionine folate cycle on DNA methylation, are still under investigation. This manuscript provides the genome-wide DNA methylation dataset (GSE180362) of bovine embryonic fibroblast cells exposed to different supplementation levels of glucose and methionine, choline, folate, and vitamin B12 (collectively named as Epigenetic Modifiers - EM). The DNA methylation was measured using MSP-I digestion and Reduced Representation Bisulfite Sequencing. Bioinformatics analyses included data quality control, read mapping, methylation calling, and differential methylation analyses. Supplementary file S1 and data analysis codes are within this article. To our knowledge, this is the first dataset investigating the effects of four EM in bovine embryonic fibroblast DNA methylation profiles. Furthermore, this data and its findings provide information on putative candidate genes responsive to DNA methylation due to EM supplementation.

9.
Front Genet ; 13: 812764, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281844

RESUMO

Epigenetic modifiers (EM; methionine, choline, folate, and vitamin B12) are important for early embryonic development due to their roles as methyl donors or cofactors in methylation reactions. Additionally, they are essential for the synthesis of nucleotides, polyamines, redox equivalents, and energy metabolites. Despite their importance, investigation into the supplementation of EM in ruminants has been limited to one or two epigenetic modifiers. Like all biochemical pathways, one-carbon metabolism needs to be stoichiometrically balanced. Thus, we investigated the effects of supplementing four EM encompassing the methionine-folate cycle on bovine embryonic fibroblast growth, mitochondrial function, and DNA methylation. We hypothesized that EM supplemented to embryonic fibroblasts cultured in divergent glucose media would increase mitochondrial respiration and cell growth rate and alter DNA methylation as reflected by changes in the gene expression of enzymes involved in methylation reactions, thereby improving the growth parameters beyond Control treated cells. Bovine embryonic fibroblast cells were cultured in Eagle's minimum essential medium with 1 g/L glucose (Low) or 4.5 g/L glucose (High). The control medium contained no additional OCM, whereas the treated media contained supplemented EM at 2.5, 5, and 10 times (×2.5, ×5, and ×10, respectively) the control media, except for methionine (limited to ×2). Therefore, the experimental design was a 2 (levels of glucose) × 4 (levels of EM) factorial arrangement of treatments. Cells were passaged three times in their respective treatment media before analysis for growth rate, cell proliferation, mitochondrial respiration, transcript abundance of methionine-folate cycle enzymes, and DNA methylation by reduced-representation bisulfite sequencing. Total cell growth was greatest in High ×10 and mitochondrial maximal respiration, and reserve capacity was greatest (p < 0.01) for High ×2.5 and ×10 compared with all other treatments. In Low cells, the total growth rate, mitochondrial maximal respiration, and reserve capacity increased quadratically to 2.5 and ×5 and decreased to control levels at ×10. The biological processes identified due to differential methylation included the positive regulation of GTPase activity, molecular function, protein modification processes, phosphorylation, and metabolic processes. These data are interpreted to imply that EM increased the growth rate and mitochondrial function beyond Control treated cells in both Low and High cells, which may be due to changes in the methylation of genes involved with growth and energy metabolism.

10.
Mol Reprod Dev ; 89(4): 175-201, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35023252

RESUMO

This study aimed to identify transcriptome differences between distinct or transitional stage spherical, ovoid, and tubular porcine blastocysts throughout the initiation of elongation. We performed a global transcriptome analysis of differential gene expression using RNA-Seq with high temporal resolution between spherical, ovoid, and tubular stage blastocysts at specific sequential stages of development from litters containing conceptus populations of distinct or transitional blastocysts. After RNA-Seq analysis, significant differentially expressed genes (DEGs) and pathways were identified between distinct morphologies or sequential development stages. Overall, 1898 significant DEGs were identified between distinct spherical and ovoid morphologies, with 311 total DEGs between developmental stages throughout this first morphological transition, while 15 were identified between distinct ovoid and tubular, with eight total throughout these second morphological transition developmental stages. The high quantity of DEGs and pathways between conceptus stages throughout the spherical to ovoid transition suggests the importance of gene regulation during this first morphological transition for initiating elongation. Further, extensive DEG coverage of known elongation signaling pathways was illustrated from spherical to ovoid, and regulation of lipid signaling and membrane/ECM remodeling across these early conceptus stages were implicated as essential to this process, providing novel insights into potential mechanisms governing this rapid morphological change.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Transcriptoma , Animais , Blastocisto/metabolismo , Embrião de Mamíferos/metabolismo , Perfilação da Expressão Gênica , Suínos
11.
Transl Anim Sci ; 5(4): txab219, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34909604

RESUMO

The identification of an inexpensive, indirect measure of feed efficiency in swine could be a useful tool to help identify animals with improved phenotypes to supplement expensive phenotypes including individual feed intakes. The purpose of this study was to determine whether hematology parameters in pigs at the beginning and end of a feed efficiency study, or changes in those values over the study, were associated with average daily gain (ADG), average daily feed intake (ADFI), or gain-to-feed (G:F). Whole blood samples were taken at days 0 and 42 from pigs (n = 178) that were monitored for individual feed intakes and body weight gain during a 6-week study. Blood samples were analyzed for blood cell parameters including white blood cell (WBC), neutrophil, lymphocyte, monocyte, eosinophil and basophil counts, red blood cell (RBC) counts, hemoglobin, hematocrit, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC), platelet count, and mean platelet volume (MPV). Feed efficiency parameters were predicted using an ANOVA model including fixed effects of farrowing group and pen (sex constant) and individual hematology parameters at day 0, day 42 or their change as covariates. At day 0, platelet count was positively associated with ADFI (P < 0.05) and negatively associated with G:F (P < 0.1), and lymphocyte count was positively associated with ADFI (P < 0.05). At day 42, neutrophil, RBC counts, hemoglobin and hematocrit were associated with ADFI (P < 10-3). Over the course of the study, changes in RBC measurements including RBC, hemoglobin, MCV, MCH, and MCHC (P < 10-4) which may improve oxygen carrying capacity, were associated with ADG and ADFI. The change in hematocrit over the course of the study was the only parameter that was associated with all three measures of feed efficiency (P < 0.05). Changes in RBC parameters, especially hematocrit, may be useful measurements to supplement feed efficiency phenotypes in swine.

12.
J Anim Sci ; 99(12)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34718608

RESUMO

The objective of this study was to determine whether increasing propionate alters dry matter intake (DMI), glucose clearance rate, blood metabolites, insulin concentrations, and hepatic gene expression in steers fed a finishing diet. Holstein steers (n = 15; BW = 243 ± 3.6 kg) were individually fed a finishing diet ad libitum. Steers were allocated by body weight (BW) to receive: no Ca propionate (Control), 100 g/d Ca propionate (Low), or 300 g/d Ca propionate (High) in the diet. Orts were collected and weighed daily to determine DMI. Blood samples were collected on days 0, 7, and 21, and BW recorded on days 0, 14, and 28. An intravenous glucose tolerance test (IVGTT) was conducted on days 14 and 28 of the trial. Liver biopsies were collected on day 33 for gene expression analysis. Blood samples were analyzed for whole blood glucose and lactate, plasma non-esterified fatty acids (NEFAs), and insulin concentrations. Data were analyzed using a mixed model with treatment, day and their interaction included, with day and minute as a repeated measure. The control treatment had greater (P < 0.01) DMI than low and high steers. Body weight was increased in control steers on days 14 and 28 compared with the steers receiving the High treatment (P = 0.03 for the interaction). Blood glucose concentrations tended (P = 0.09) to be higher on day 21 than days 0 and 7 but was not affected by treatment (P = 0.58). Plasma NEFA concentrations were lower (P = 0.05) for control steers than other treatments, and greater (P = 0.002) on day 0 than days 7 and 21. Blood lactate concentrations were greater (P = 0.05) on day 7, than days 0 and 21, but not affected by treatment (P = 0.13). High steers had greater plasma insulin concentrations in response to the IVGTT than steers on the other treatments (P = 0.001). There was no treatment (P ≥ 0.16) or day effect (P ≥ 0.36) on glucose peak, plateau, or clearance rate. High steers had greater expression of solute carrier family 16 member 1 (SLC16A1; P = 0.05) and tended to have greater hepatic expression of solute carrier family 2 member 2 (SLC2A2; P = 0.07). These data indicate that increased propionate may decrease DMI and insulin sensitivity.


Assuntos
Ração Animal , Propionatos , Ração Animal/análise , Animais , Glicemia , Dieta/veterinária
13.
BMC Res Notes ; 14(1): 361, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530907

RESUMO

OBJECTIVE: Realimentation can compensate for weight loss from poor-quality feedstuffs or drought. Mature cows fluctuate in body weight throughout the year due to nutrient availability. The objective of this study was to determine whether cows that differ in weight gain during realimentation also differ in the abundance of transcripts for enzymes associated with energy utilization in skeletal muscle. Mature cows were subjected to feed restriction followed by ad libitum feed. Skeletal muscle transcriptome expression differences during the two feeding periods were determined from cows with greater (n = 6) and less (n = 6) weight gain during the ad libitum feeding period. RESULTS: A total of 567 differentially expressed genes (408 up- and 159 down-regulated) were identified for the comparison of restriction and ad libitum periods (PBonferroni < 0.05). These genes were over-represented in lysosome, aminoacyl-tRNA biosynthesis, and glutathione metabolism pathways. Validation of the expression of five of the genes was performed and four were confirmed. These data suggest that realimentation weight gain for all cows is partially controlled by protein turnover, but oxidative stress and cellular signaling pathways are also involved in the muscle tissue. This dataset provides insight into molecular mechanisms utilized by mature cows during realimentation after a period of low abundance feed.


Assuntos
Ração Animal , Transcriptoma , Ração Animal/análise , Animais , Peso Corporal , Bovinos , Feminino , Músculo Esquelético , Aumento de Peso
14.
BMC Genom Data ; 22(1): 25, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376140

RESUMO

BACKGROUND: Porcine milk is a complex fluid, containing a myriad of immunological, biochemical, and cellular components, made to satisfy the nutritional requirements of the neonate. Whole milk contains many different cell types, including mammary epithelial cells, neutrophils, macrophages, and lymphocytes, as well nanoparticles, such as milk exosomes. To-date, only a limited number of livestock transcriptomic studies have reported sequencing of milk. Moreover, those studies focused only on sequencing somatic cells as a proxy for the mammary gland with the goal of investigating differences in the lactation process. Recent studies have indicated that RNA originating from multiple cell types present in milk can withstand harsh environments, such as the digestive system, and transmit regulatory molecules from maternal to neonate. Transcriptomic profiling of porcine whole milk, which is reflective of the combined cell populations, could help elucidate these mechanisms. To this end, total RNA from colostrum and mature milk samples were sequenced from 65 sows at differing parities. A stringent bioinformatic pipeline was used to identify and characterize 70,841 transcripts. RESULTS: The 70,841 identified transcripts included 42,733 previously annotated transcripts and 28,108 novel transcripts. Differential gene expression analysis was conducted using a generalized linear model coupled with the Lancaster method for P-value aggregation across transcripts. In total, 1667 differentially expressed genes (DEG) were identified for the milk type main effect, and 33 DEG were identified for the milk type x parity interaction. Several gene ontology (GO) terms related to immune response were significant for the milk type main effect, supporting the well-known fact that immunoglobulins and immune cells are transferred to the neonate via colostrum. CONCLUSIONS: This is the first study to perform global transcriptome analysis from whole milk samples in sows from different parities. Our results provide important information and insight into synthesis of milk proteins and innate immunity and potential targets for future improvement of swine lactation and piglet development.


Assuntos
Colostro , Perfilação da Expressão Gênica , Leite , Paridade , Animais , Feminino , Lactação , Gravidez , RNA , Suínos , Transcriptoma
15.
Access Microbiol ; 3(1): acmi000180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33997611

RESUMO

Methane produced by cattle is one of the contributors of anthropogenic greenhouse gas. Methods to lessen methane emissions from cattle have been met with varying success; thus establishing consistent methods for decreasing methane production are imperative. Ferric iron may possibly act to decrease methane by acting as an alternative electron acceptor. The objective of this study was to assess the effect of ferric citrate on the rumen bacterial and archaeal communities and its impact on methane production. In this study, eight steers were used in a repeated Latin square design with 0, 250, 500 or 750 mg Fe/kg DM of ferric iron (as ferric citrate) in four different periods. Each period consisted of a 16 day adaptation period and 5 day sampling period. During each sampling period, methane production was measured, and rumen content was collected for bacterial and archaeal community analyses. Normally distributed data were analysed using a mixed model ANOVA using the GLIMMIX procedure of SAS, and non-normally distributed data were analysed in the same manner following ranking. Ferric citrate did not have any effect on bacterial community composition, methanogenic archaea nor methane production (P>0.05). Ferric citrate may not be a viable option to observe a ruminal response for decreases in enteric methane production.

16.
Genes (Basel) ; 11(11)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167493

RESUMO

Decreasing costs are making low coverage sequencing with imputation to a comprehensive reference panel an attractive alternative to obtain functional variant genotypes that can increase the accuracy of genomic prediction. To assess the potential of low-pass sequencing, genomic sequence of 77 steers sequenced to >10X coverage was downsampled to 1X and imputed to a reference of 946 cattle representing multiple Bos taurus and Bos indicus-influenced breeds. Genotypes for nearly 60 million variants detected in the reference were imputed from the downsampled sequence. The imputed genotypes strongly agreed with the SNP array genotypes (r¯=0.99) and the genotypes called from the transcript sequence (r¯=0.97). Effects of BovineSNP50 and GGP-F250 variants on birth weight, postweaning gain, and marbling were solved without the steers' phenotypes and genotypes, then applied to their genotypes, to predict the molecular breeding values (MBV). The steers' MBV were similar when using imputed and array genotypes. Replacing array variants with functional sequence variants might allow more robust MBV. Imputation from low coverage sequence offers a viable, low-cost approach to obtain functional variant genotypes that could improve genomic prediction.


Assuntos
Criação de Animais Domésticos/métodos , Bovinos/genética , Análise de Sequência de DNA/métodos , Animais , Cruzamento/métodos , Genômica/métodos , Genótipo , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Carne Vermelha , Estados Unidos
17.
J Anim Sci ; 98(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33170221

RESUMO

Abscess is the highest cause of liver condemnation and is estimated to cost the beef industry US$64 million annually. Fusobacterium necrophorum, commonly found in the bovine rumen, is the primary bacteria associated with liver abscess in cattle. Theoretically, damage to the rumen wall allows F. necrophorum to invade the bloodstream and colonize the liver. The objective of this study was to determine the changes in gene expression in the rumen epithelium and microbial populations adherent to the rumen epithelium and in the rumen contents of beef cattle with liver abscesses compared with those with no liver abscesses. Rumen epithelial tissue and rumen content were collected from 31 steers and heifers with liver abscesses and 30 animals with no liver abscesses. Ribonucleic acid (RNA) sequencing was performed on the rumen epithelium, and a total of 221 genes were identified as differentially expressed in the animals with liver abscesses compared with animals with no abscesses, after removal of genes that were identified as a result of interaction with sex. The nuclear factor kappa-light-chain enhancer of activated B cells signaling and interferon signaling pathways were significantly enriched in the differentially expressed gene (DEG) set. The majority of the genes in these pathways were downregulated in animals with liver abscesses. In addition, RNA translation and protein processing genes were also downregulated, suggesting that protein synthesis may be compromised in animals with liver abscesses. The rumen content bacterial communities were significantly different from the rumen wall epimural bacterial communities. Permutational multivariate analysis of variance (PERMANOVA) analysis did not identify global differences in the microbiome of the rumen contents but did identify differences in the epimural bacterial communities on the rumen wall of animals without and with liver abscesses. In addition, associations between DEG and specific bacterial amplicon sequence variants of epimural bacteria were observed. The DEG and bacterial profile on the rumen papillae identified in this study may serve as a method to monitor animals with existing liver abscesses or to predict those that are more likely to develop liver abscesses.


Assuntos
Abscesso Hepático , Microbiota , Animais , Bovinos , Epitélio , Feminino , Abscesso Hepático/veterinária , Rúmen , Transcriptoma
18.
J Anim Sci ; 98(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32860689

RESUMO

The objective of this study was to quantify the differences in the activity of jejunal maltase and isomaltase between two groups of steers with average dry matter intake (DMI) and differing average daily gain (ADG). DMI and ADG were measured in crossbred steers (n = 69; initial body weight = 456 ± 5.0 kg) consuming a finishing diet containing 67.8% dry-rolled corn, 20.0% wet distillers grains with solubles, 8.0% alfalfa hay, and 4.2% vitamin/mineral supplement on a dry matter basis for 84 d. Jejunal mucosal samples were collected from eight steers with the greatest (high) or least (low) ADG and average DMI (± 0.55 standard deviation). Homogenates of jejunal mucosa were incubated with increasing amounts of maltose and isomaltose to determine the disaccharidase kinetics. Total mucosal protein concentration (mg protein/g tissue; P = 0.45) of the mucosa and small intestinal weights (P = 0.69) did not differ between the groups. Neither the Michaelis-Menten constant (Km) of isomaltase (P = 0.15) nor maltase (P = 0.21) differed between groups. The isomaltase maximum velocity (Vmax) expressed per gram of protein tended to differ (P = 0.10) between groups of steers but did not differ (P = 0.13) when expressed on a tissue basis. Similarly, neither the maltase Vmax expressed per gram of protein (P = 0.31) nor tissue (P = 0.32) differed between groups. While previous studies have indicated that disaccharidase expression is associated with differences in ADG, data presented here indicate that differences in enzyme activity at the end of the finishing period are minimal.


Assuntos
Bovinos/fisiologia , Dissacaridases/metabolismo , Animais , Dieta/veterinária , Jejuno/enzimologia , Cinética , Masculino , Mucosa/enzimologia , Aumento de Peso , Zea mays
19.
J Anim Sci ; 98(2)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31930312

RESUMO

We hypothesized cattle that differed in BW gain had different digestive tract microbiota. Two experiments were conducted. In both experiments, steers received a diet that consisted of 8.0% chopped alfalfa hay, 20% wet distillers grain with solubles, 67.75% dry-rolled corn, and 4.25% vitamin/mineral mix (including monensin) on a dry matter basis. Steers had ad libitum access to feed and water. In experiment 1, 144 steers (age = 310 ± 1.5 d; BW = 503 ± 37.2 kg) were individually fed for 105 d. Ruminal digesta samples were collected from eight steers with the greatest (1.96 ± 0.02 kg/d) and eight steers with the least ADG (1.57 ± 0.02 kg/d) that were within ±0.32 SD of the mean (10.1 ± 0.05 kg/d) dry matter. In experiment 2, 66 steers (age = 396 ± 1 d; BW = 456 ± 5 kg) were individually fed for 84 d. Rumen, duodenum, jejunum, ileum, cecum, and colon digesta samples were collected from eight steers with the greatest (2.39 ± 0.06 kg/d) and eight steers with the least ADG (1.85 ± 0.06 kg/d) that were within ±0.55 SD of the mean dry matter intake (11.9 ± 0.1 kg/d). In both studies, DNA was isolated and the V1 to V3 regions of the 16S rRNA gene were sequenced. Operational taxonomic units were classified using 0.03 dissimilarity and identified using the Greengenes 16S rRNA gene database. In experiment 1, there were no differences in the Chao1, Shannon, Simpson, and InvSimpson diversity indexes or the permutation multivariate analysis of variance (PERMANOVA; P = 0.57). The hierarchical test returned six clades as being differentially abundant between steer classifications (P < 0.05). In experiment 2, Chao1, Shannon, Simpson, and InvSimpson diversity indexes and PERMANOVA between steer classified as less or greater ADG did not differ (P > 0.05) for the rumen, duodenum, ileum, cecum, and colon. In the jejunum, there tended to be a difference in the Chao1 (P = 0.09) and Simpson diversity (P = 0.09) indexes between steer classifications, but there was no difference in the Shannon (P = 0.14) and InvSimpson (P = 0.14) diversity indexes. Classification groups for the jejunum differed (P = 0.006) in the PERMANOVA. The hierarchical dependence false discovery rate procedure returned 11 clades as being differentially abundant between steer classifications in the jejunum (P < 0.05). The majority of the OTU were in the Families Corynebacteriaceae and Coriobacteriaceae. This study suggests that intestinal differences in the microbiota of ruminants may be associated with animal performance.


Assuntos
Ração Animal/análise , Bovinos/microbiologia , Microbioma Gastrointestinal/fisiologia , Animais , Bovinos/fisiologia , Dieta/veterinária , Ingestão de Alimentos , Grão Comestível , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Masculino , Minerais/metabolismo , Rúmen/metabolismo , Rúmen/microbiologia , Vitaminas/metabolismo , Zea mays
20.
PLoS One ; 15(1): e0227154, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31910243

RESUMO

Mesenteric fat is a visceral fat depot that increases with cattle maturity and can be influenced by diet. There may be a relationship between the accumulation of mesenteric fat and feed efficiency in beef cattle. The purpose of this study was to identify genes that may be differentially expressed in steers with high and low BW gain and feed intake. RNA-Seq was used to evaluate the transcript abundance of genes in the mesenteric fat from a total of 78 steers collected over 5 different cohorts. A meta-analysis was used to identify genes involved with gain, feed intake or the interaction of both phenotypes. The interaction analysis identified 11 genes as differentially expressed. For the main effect of gain, a total of 87 differentially expressed genes (DEG) were identified (PADJ<0.05), and 24 were identified in the analysis for feed intake. Genes identified for gain were involved in functions and pathways including lipid metabolism, stress response/protein folding, cell proliferation/growth, axon guidance and inflammation. The genes for feed intake did not cluster into pathways, but some of the DEG for intake had functions related to inflammation, immunity, and/or signal transduction (JCHAIN, RIPK1, LY86, SPP1, LYZ, CD5, CD53, SRPX, and NF2). At PADJ<0.1, only 4 genes (OLFML3, LOC100300716, MRPL15, and PUS10) were identified as differentially expressed in two or more cohorts, highlighting the importance of evaluating the transcriptome of more than one group of animals and incorporating a meta-analysis. This meta-analysis has produced many mesenteric fat DEG that may be contributing to gain and feed intake in cattle.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/genética , Regulação do Apetite/genética , Regulação da Expressão Gênica/fisiologia , Gordura Intra-Abdominal/metabolismo , Aumento de Peso/genética , Criação de Animais Domésticos , Animais , Bovinos , Masculino , RNA-Seq , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...